

COPELAND[™] SCROLL TO BITZER ECOLINE CONVERSION GUIDE

For Models

Copeland ZF Scrolls to CE3 and CE4 Reciprocating Compressors

XR-0015-02 // 60Hz Version

The intention of this document is to serve as general guidelines. The information contained is not intended to replace specific equipment and/or system manufacturer's information or guidelines. BITZER implies no liability for the information contained. It is BITZER's implicit intention that nothing contained in this guide replaces any past, present or future warranty policy of BITZER and/or any other manufacturer's equipment

These guidelines are not a replacement for information specific to that of the manufacturer or the manufacturer's system technical product information.

Each system may vary in design, usage and specifications. This document is intended for use specific to the compressor only and not intended to be a "catch all" for any and every possible application of the compressor.

BITZER's intention is that only qualified and certified (where applicable) individuals specific to the refrigeration industry use the information contained and all standard refrigeration handling and safety practices must be followed at all times.

BITZER's intention is that all electric work is performed by qualified and certified (where applicable) individuals and all standard electrical safety practices must be followed at all times.

WARNING

This icon indicates instructions to avoid personal injury and material damage

CAUTION

This icon indicates instructions to avoid property damage and possible personal injury

HIGH VOLTAGE This icon indicates operations with a danger of electric shock

To the best of our knowledge, the information in this book is accurate. However, BITZER US, BITZER CANADA, and BITZER MEXICO do not assume any liability for the accuracy or completeness of any contents. No warranty information can be applied to or inferred from the use of this book.

Copeland™ is a registered trademark of the Emerson Electric Company

TABLE OF CONTENTS

1. WARRANTY AND REPLACEMENT GUIDELINES	4-6
1.1 REPLACEMENT GUIDELINES	4
1.2 REPLACEMENT RECOMMENDATIONS	6
2. SELECTION OF COMPRESSOR AND PARTS	7-10
2.1 LOW TEMP CROSS REFERENCE CHART TO SELECT BITZER MODEL	7
2.2 MEDIUM TEMP CROSS REFERENCE CHART TO SELECT BITZER MODEL	8
2.3 SELECTION OF OPTIONS AND ACCESSORIES	9
2.4 SELECTION OF LOW TEMP R22 ACCESSORIES	10
3. DIMENSIONS AND PORT LOCATIONS	12-13
4. R22 LOW TEMP APPLICATION / DESUPERHEATING METHOD	14-18
4.1 APPLICATION LIMITS: WHEN IS SPECIAL COOLING REQUIRED?	14
4.2 INSTALLING THE CIC (Controlled Injection Cooling) KIT FOR CE4 MODELS	15
4.3 INSTALLING THE Y1037 TREV FOR LIQUID INJECTION ON CE4 MODELS	16
4.4 DISCHARGE TEMPERATURE SENSOR INSTALLATION	17
5. INSTRUCTIONS ON INSTALLATION OF ACCESSORIES	18-21
5.1 INT280 OIL LEVEL REGULATOR	18
5.2 OLC-K1 OPTICAL OIL LEVEL CONTROL	19
5.3 DELTA PII/JOHNSON P545 OIL PRESSURE CONTROL	20
6. WIRING DIAGRAM APPENDIX	22-25
6.1 TERMINAL BOX WIRING DIAGRAM	22
6.2 WIRING SE-B3, OLC-K1 AND DELTA PII MONITORING DEVICES	23
6.3 WIRING THE INT280 OIL LEVEL REGULATOR	25
7. TROUBLESHOOTING	26-27
8. START UP DATA SHEET	28

Replacing Scrolls with Reciprocating Compressors

Purpose/Scope:

These guidelines are for retro-fitting scroll compressor racks with BITZER semi-hermetic reciprocating compressors.

According to the terms and conditions of sale, BITZER warrants compressors for a specified length of time due to any defect in material or workmanship.

Typically, there exists a concession or an agreement with customers on an individual basis to warrant a compressor's first failure for reason outside of the terms and conditions of sale. Retrofitting a rack from a scroll compressor to a reciprocating compressor could potentially put the new reciprocating compressor into a harmful situation that would shorten the life of the product. These guidelines are intended to accompany any additional concession or agreements outside of the terms and conditions.

The guideline neither verifies nor disputes any legal binding agreement or contract.

Guidelines:

- 1. BITZER US, INC will only be responsible for providing technical data regarding BITZER compressors – (e.g. capacities, electrical, and dimensional drawings.)
- BITZER will not be responsible for system engineering or re-engineering. This includes final compressor selection, condenser sizing, refrigeration line sizing, oil system, electrical wiring or components.
- BITZER Applications Engineering is available for review of the final compressor selection and to provide recommendations as necessary. "Before" and "after" legends shall be provided in .pdf format (emailed to <u>techsupport@bitzerus.com</u>).
- 4. The complete suction group must be retro-fitted as a whole with no combination of scroll and reciprocating compressors on the same suction header.
- 5. System suction accumulators must be evaluated and sized properly to meet system demands. Any low temp suction header must have a suction accumulator dedicated to the header.
- 6. If a check valve is present in the discharge line, it must be removed.
- 7. All compressors must be equipped with oil safety cut off devices design to provide compressor shutdown in the event of less than 9 psig positive oil pressure for 90 seconds. In the event that an "S" style compressor without a positive pressure oil pump is used, an optical oil sensor must be used.
- 8. System oil must be as specified for use with BITZER compressors under the design conditions.
- 9. System oil must be tested for moisture and acid before and after retro-fit. If oil is of questionable quality, a complete oil change(s) must be completed until satisfactory results are achieved. It is recommended that at least 2 oil changes be completed. An oil sample verifying its integrity (moisture, acid, cleanliness, viscosity) must be performed after 100 operating hours and the results emailed to techsupport@bitzerus.com (or a vile can be sent directly to BITZER).

- 10. All suction filters, liquid line filter/driers, and oil filters must be changed upon completion of the retro-fit and follow up checked for proper operation at 7 days and 21 days after completion.
- 11. The contractor must send contact information regarding any system subcontractor to BITZER. A representative of BITZER compressor must have the option to be present during the start up process (notify regional sales manager).
- 12. All standard practices for the installation of refrigeration equipment must be observed.
- 13. All other application requirements and limits should be followed as stated in BITZER literature KB -115, KP-108, KW-105, KT-100, KT-110, KT-122, KT-130, KT-150, KT-151, KT-170, KT-180, KT-600, and KT 602, where applicable ("see document Application Requirements Single Stage Semi Recips"). Note that where SE-B1 or SE-B2 is mentioned, SE-B3 is applicable. Also, where the term "CIC" is mentioned, it should be replaced with another suitable desuperheating system as outlined by application limits.
- 14. Liquid injection and unloading must not be allowed to take place at the same time.
- 15. Unloading on any compressor requires a head cooling fan.
- 16. Oil system must have the ability to seal itself off from discharge gas either through a float style separator or a level sensor. Level sensor would be located in the reservoir and connected to a solenoid valve that can close off the oil supply from bleeding discharge gas into the main oil service line.
- 17. A startup report (see attached) must be completed and faxed/emailed to BITZER US.

Notes

These recommendations are based on analysis of previously retrofitted stores and feedback from the contractors performing the retrofits. These recommendations have no bearing on the warranty outlined in the terms and conditions or other concessions/agreements.

Guidelines:

- 1. Each compressor should have a new contactor, mounting bracket, refrigeration oil, suction filters, liquid line filters/driers, oil filters and any other miscellaneous material to insure a complete and fully operational system.
- 2. Each suction header should be fitted with a device for draining liquid out of the bottom of the header (example: Refrigeration Technologies Compressor Protection System (CPS)).
- All liquid injection desuperheating valves should be installed with a normally closed solenoid valve prior to the desuperheating valve and controlled by the auxiliary contacts of the compressor.
- 4. If a crankcase heater is required, it should operate off of auxiliary contacts of the compressor contactor.
- 5. Most systems have a Turboshed oil separator that is unserviceable and often full of broken compressor pieces. Furthermore, some Turbosheds have been found with broken vanes, severely limiting the oil separation percentage. This should be replaced with a brand new serviceable separator that is adequately sized for the discharge header. It is recommended that this separator also has a float for closing off flow of oil or gas at low level.
- 6. The reservoir of the oil system should be kept under low pressure using a regulator valve to bleed back to the medium temp suction header (or whichever header has the highest saturated temperature) with a pressure differential of 20-30psi.
- 7. All low temp compressors must have a discharge temperature sensor wired in series with the motor protection control.
- 8. It is encouraged to add a vibration eliminator as this is generally a good practice and common on parallel rack applications. It should be installed after the compressor discharge outlet and run parallel to the compressor crankshaft.

Low Temp Selections

Note: Scroll and reciprocating compressors compress at different ratios. Thus, as the pressure ratio changes, the scroll and recip compressor's capacities change in different ratios.

-28°F SST*									
Copeland		100°F SDT		110°F SDT	120°F SDT				
Scroll	BITZER	Capacity Difference	BITZER	Capacity Difference	BITZER	Capacity Difference			
ZF15K4E	4EES-4	-13%	4DES-5	-7%	4CES-6	1%			
ZF IDK4E	4DES-5	6%	4CES-6	18%	4CES-6	1%			
ZF18K4E	4DES-5	-10%	4CES-6	0%	4CES-6	-14%			
ZF ION4E	4CES-6	13%	4CES-6	0%	4VE-7	17%			
75041445	4CES-6	-6%	4CES-6	-16%	4VE-7	-3%			
ZF24K4E	4VE-7	14%	4VE-7	6%	4VE-7	-3%			
	4TE-9	-2%	4TE-9	-9%	4PE-12	-4%			
ZF33K4E	4PE-12	13%	4PE-12	4%	4NE-14	15%			
75401445	4PE-12	-7%	4PE-12	-13%	4NE-14	-3%			
ZF40K4E	4NE-14	10%	4NE-14	3%	4NE-14	-3%			
75401/45	4NE-14	-4%	4NE-14	-11%	4NE-14	-18%			
ZF48K4E	4JE-15**	1%	4HE-18**	8%	4HE-18**	-1%			

	-23°F SST*								
Copeland		100°F SDT		110°F SDT	120°F SDT				
Scroll	BITZER	Capacity Difference	BITZER	Capacity Difference	BITZER	Capacity Difference			
ZF15K4E	4EES-4	-5%	4EES-4	-15%	4DES-5	-8%			
ZF IDK4E	4DES-5	15%	4DES-5	4%	4CES-6	15%			
ZF18K4E	4DES-5	-2%	4DES-5	-12%	4CES-6	-2%			
ZF ION4E	4CES-6	21%	4CES-6	10%	4VE-7	26%			
ZF24K4E	4CES-6	1%	4CES-6	-8%	4CES-6	-18%			
	4CES-6	1%	4VE-7	13%	4VE-7	5%			
75001/45	4TE-9	3%	4TE-9	-3%	4TE-9	-9%			
ZF33K4E	4PE-12	19%	4PE-12	12%	4PE-12	5%			
ZF40K4E	4PE-12	-2%	4PE-12	-7%	4PE-12	-12%			
	4NE-14	15%	4NE-14	9%	4NE-14	4%			
	4NE-14	1%	4NE-14	-5%	4NE-14	-11%			
ZF48K4E	4NE-14	1%	4JE-15**	1%	4HE-18**	10%			

-18°F SST*									
Copeland		100°F SDT		110°F SDT	120°F SDT				
Scroll	BITZER	Capacity Difference	BITZER	Capacity Difference	BITZER	Capacity Difference			
ZF15K4E	4EES-4	1%	4EES-4	-8%	4EES-4	-18%			
ZF I5K4E	4EES-4	1%	4DES-5	13%	4DES-5	2%			
ZF18K4E	4DES-5	4%	4DES-5	-4%	4DES-5	-13%			
ZF ION4E	4DES-5	4%	4CES-6	18%	4CES-6	8%			
ZF24K4E	4DES-5	-13%	4CES-6	-1%	4CES-6	-10%			
	4CES-6	7%	4CES-6	-1%	4VE-7	12%			
ZF33K4E	4CES-6	-24%	4TE-9	2%	4TE-9	-3%			
ZF33K4E	4TE-9	8%	4TE-9	2%	4PE-12	12%			
ZF40K4E	4TE-9	-12%	4PE-12	-3%	4PE-12	-7%			
	4PE-12	2%	4NE-14	15%	4NE-14	10%			
75491/45	4PE-12	-11%	4NE-14	0%	4NE-14	-5%			
ZF48K4E	4NE-14	4%	4NE-14	0%	4JE-15**	2%			

Parameters Assumed:R22, 460V/3PH/60Hz, 65°F RETURN GAS, 100% USEFUL SUPERHEAT

* For temperatures below -4°F SST (with 130°F SCT), special set-up/liquid injection is required. Refer to the section on low temperature application setup. For lower condensing temperatures, liquid injection may only be required at lower SST temperatures, consult with Bitzer for exact parameters.

** BE5 compressors have larger overall dimensions than CE4 compressors, please review dimensions to ensure fit Contact Bitzer Tech Support (techsupport@bitzerus.com) if specific data or more information is required.

2.2 Medium Temp Cross Reference

Medium Temp Selections

Note: Scroll and reciprocating compressors compress at different ratios. Thus, as the pressure ratio changes, the scroll and recip compressor's capacities change in different ratios.

	19°F SST								
Copeland	10	00°F SDT	11	0°F SDT	120°F SDT				
Scroll	BITZER	Capacity Difference	BITZER	Capacity Difference	BITZER	Capacity Difference			
ZF15K4E	4FES-5	5%	4FES-5	2%	4FES-5	-2%			
ZF15K4E	4FES-5	5%	4FES-5	2%	4EES-6	21%			
ZF18K4E	4FES-5	-13%	4FES-5	-15%	4EES-6	1%			
ZF ION4E	4EES-6	8%	4EES-6	5%	4EES-6	1%			
ZF24K4E	4EES-6	-10%	4EES-6	-13%	4DES-7	3%			
ZFZ4N4E	4DES-7	9%	4DES-7	6%	4DES-7	3%			
ZF33K4E	4DES-7	-20%	4CES-9	1%	4VE-10	-3%			
ZF35K4E	4VE-10	6%	4CES-9	1%	4TE-12	17%			
ZF40K4E	4TE-12	0%	4TE-12	-2%	4TE-12	-4%			
ZF40K4E	4TE-12	0%	4PE-15	17%	4PE-15	14%			
ZF48K4E	4TE-12	-13%	4PE-15	1%	4PE-15	-1%			
ZF48K4E	4PE-15	4%	4PE-15	1%	4NE-20	15%			

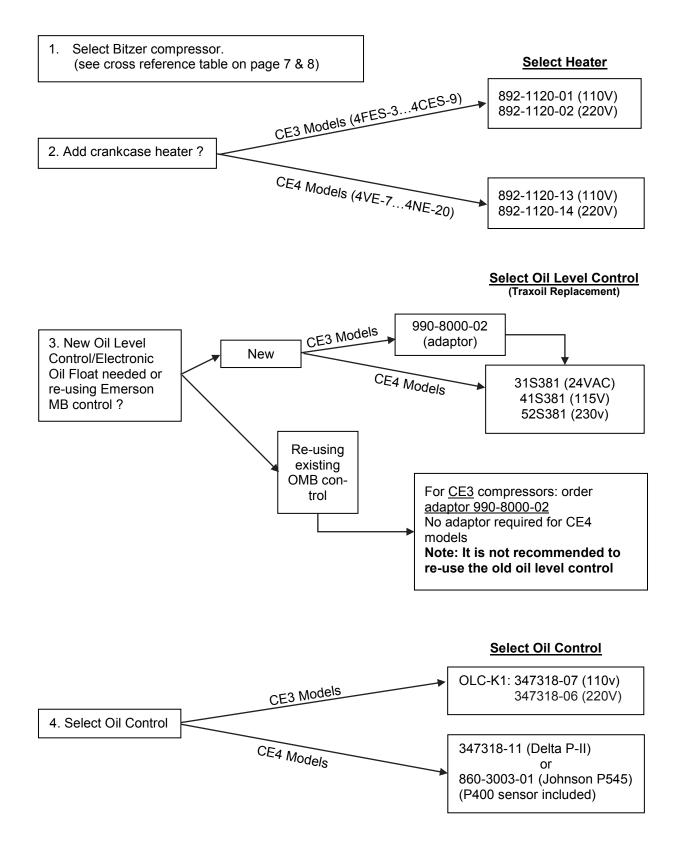
10°F SST								
Copeland	10	00°F SDT	11	0°F SDT	120°F SDT			
Scroll	BITZER	Capacity Difference	BITZER	Capacity Difference	BITZER	Capacity Difference		
ZF15K4E	4FES-5	0%	4FES-5	-3%	4FES-5	-7%		
ZF15K4E	4FES-5	0%	4EES-6	20%	4EES-6	14%		
ZF18K4E	4FES-5	-16%	4EES-6	0%	4EES-6	-4%		
ZF ION4E	4EES-6	4%	4EES-6	0%	4DES-7	17%		
ZF24K4E	4EES-6	-13%	4DES-7	2%	4DES-7	-2%		
	4DES-7	6%	4DES-7	2%	4CES-9	19%		
	4VE-10	1%	4VE-10	-3%	4VE-10	-6%		
ZF33K4E	4VE-10	1%	4TE-12	17%	4TE-12	13%		
	4TE-12	-2%	4TE-12	-5%	4TE-12	-7%		
ZF40K4E	4PE-15	16%	4PE-15	13%	4PE-15	11%		
	4PE-15	1%	4PE-15	-2%	4PE-15	-4%		
ZF48K4E	4PE-15	1%	4NE-20	14%	4NE-20	11%		

			5°F SST				
Copeland	10	0°F SDT	11	0°F SDT	120°F SDT		
Scroll	BITZER	Capacity Difference	BITZER	Capacity Difference	BITZER	Capacity Difference	
ZF15K4E	4FES-5	-2%	4FES-5	-7%	4FES-5	-11%	
ZF ISK4E	4EES-6	21%	4EES-6	16%	4EES-6	10%	
ZF18K4E	4EES-6	2%	4EES-6	-3%	4EES-6	-7%	
ZF ION4E	4EES-6	2%	4DES-7	19%	4DES-7	13%	
	4EES-6	-15%	4DES-7	0%	4DES-7	-5%	
ZF24K4E	4DES-7	4%	4DES-7	0%	4CES-9	16%	
	4VE-10	-1%	4VE-10	-5%	4CES-9	-19%	
ZF33K4E	4TE-12	19%	4TE-12	15%	4TE-12	11%	
	4TE-12	-4%	4TE-12	-6%	4TE-12	-9%	
ZF40K4E	4PE-15	14%	4PE-15	11%	4PE-15	9%	
	4PE-15	-1%	4PE-15	-4%	4PE-15	-5%	
ZF48K4E	4PE-15	15%	4PE-15	12%	4NE-20	9%	

Parameters Assumed:

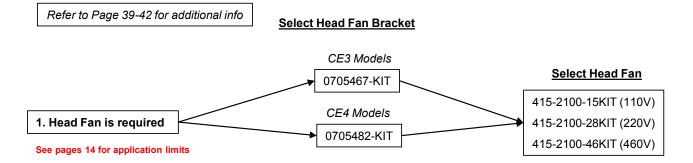
R22

```
460V/3PH/60HZ
```


65°F RETURN GAS

100% USEFUL SUPERHT

Contact Bitzer Tech Support (techsupport@bitzerus.com) if specific data or more information is required.



Selecting the Bitzer Compressor and Accessories

Additional Selections for Low Temp R22 Applications

2. For CE4 models select a desuperheating method from the two options below:

A. CIC-System - Bitzer's electronically controlled liquid injection system

347702-16 (4VE(S)-7 .. 4NE(S)-20)

- The standard CIC module is 220V. For a 115V module add "-115" to the end of the part number.
- All kits come with a 220V 50/60Hz coil.

B. Sporlan Y1037 Valve*

Select appropriate size based on chart:				
873-0407-13 (1/3 Ton, 240°F)				
873-0109-05 (1/2 Ton, 240°F)				
873-0109-11 (1 Ton, 240°F)				
873-0109-15 (1-1/2 Ton, 240°F)				

*BITZER carries 240°F Y1037 valves. Using a Y1037 valve below 230°F is not recommended.

Temperature Responsive Expansion Valve - Y1037 - Sizing Chart (Tons)

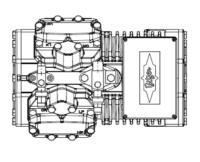
SST (Evap Temp)	-10F		-2	0F	-30F	
Return Gas Temp	20F	40F	20F	40F	20F	40F
4VE(S)-7	1/3	1/3	1/2	1/2	1/2	1/2
4TE(S)-9	1/3	1/2	1/2	1/2	1/2	1/2
4PE(S)-12	1/3	1/2	1/2	1	1/2	1
4NE(S)-14	1/3	1/2	1/2	1	1/2	1
4JE-15*	1/2	1/2	1/2	1	1	1
*4JE-15 – BE5 serie	es compre	ssors are	larger thar	n CE4 serie	es	

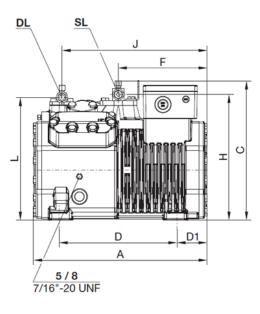
BE5 series compressors are larger than CE4 series

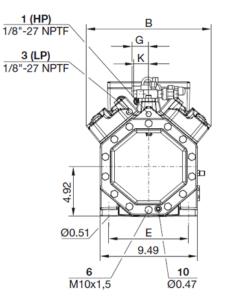
Saturated Condensing / Liquid Temp = 110°F

3. Optional Discharge Gas Temp Sensor: 347023-03 (not required with CIC-System)

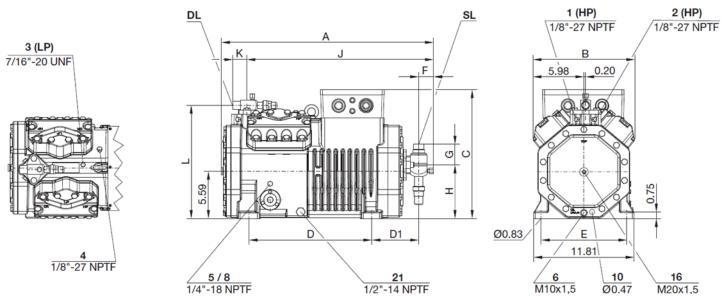
Note: Oil Cooling is not needed!


Notes




ECOLINE Dimensions and Port Locations

CE3 Models: 4FES – 4CES


4FES-3(Y) .. 4CES-9(Y)

CE4 Models: 4VE – 4NE

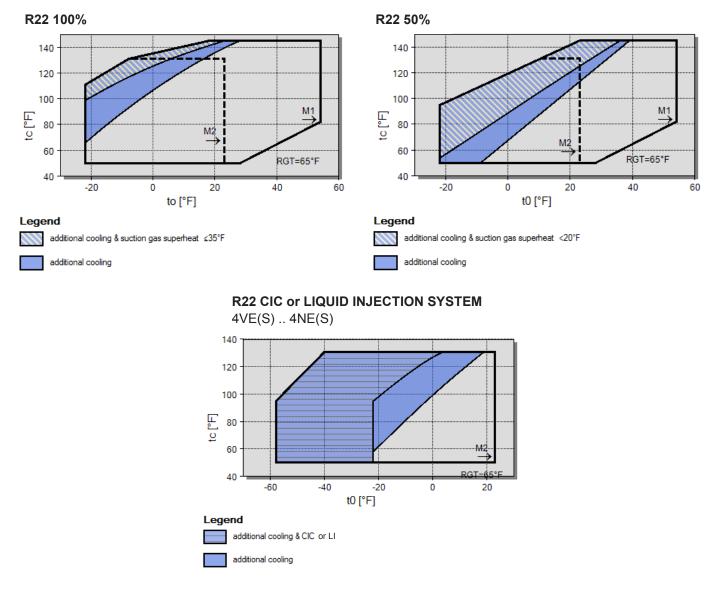
CE3 Models	А	В	С	D	D1	E	F	G	Н	J	K	L
4FES-3			13.66					1.65	12.32			
4FES-5			15.00					1.05	12.52		1.46	12.05
4EES-4	17.01				2.95		8.70			14.21	1.40	12.05
4EES-6		10.17		11 54		7 90						
4DES-5		12.17	10.60	11.54		7.80		2.21	10.44		1.65	
4DES-7			13.68					2.21	12.44			12.21
4CES-6	18.00				3.98		9.69			15.20	1.46	12.21
4CES-9												
CE3 Models	А	В	С	D	D1	E	F	G	Н	J	К	L
4VE(S)-7								2.20		21.97	1.65	13.31
4VE(S)-10								2.20		21.97	1.05	13.31
4TE(S)-9	24.92				5.51		1.73		6.34			
4TE(S)-12		11.02	15 16	14 45		10.09		2.52		21.93		
4PE(S)-12		11.93	15.16	14.45		10.08					2.21	12.46
4PE(S)-15	25.91				6.38		1.89	4.33	6.81	22.91	2.21	13.46
4NE(S)-14	24.92				5.51		1.73	2.52	6.34	21.93		
4NE(S)-20	25.91	1			6.38		1.89	4.33	6.81	22.91		
BE5 Models	А	В	С	D	D1	E	F	G	Н	J	K	L
4JE-15**	27.09	17.95	18.50	15.00	5.94	12.01	2.60	4.33	14.21	19.72	2.21	14.25

ECOLINE Dimensions

** BE5 compressors have larger overall dimensions than CE4 compressors, please review dimensions to ensure fit Contact Bitzer Tech Support (techsupport@bitzerus.com) if specific data or more information is required.

Port Locations

1	High pressure connection (HP)	10	Crankcase heater
2	Discharge gas temp sensor (HP) or LI sensor	11	High pressure oil connection (7/16" - 20 UNF)
3	Low pressure connection (LP)	12	Low pressure oil connection (7/16" - 20 UNF)
4	Liquid Injection spray nozzle (LP)	16	Connection for oil monitoring (M20 Thread)
5	Oil fill plug	21	Connection for oil service valve
6	Oil drain (magnetic screw)		


R22 LOW TEMP APPLICATIONS

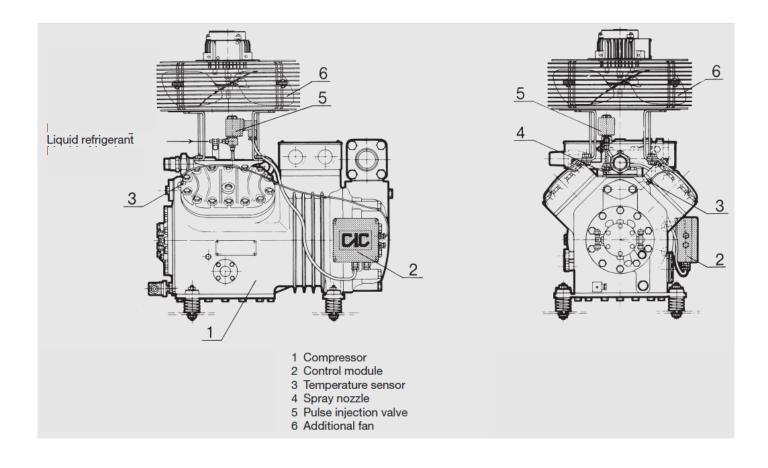
The use of R22 in low temp applications can place a high demand on the compressor and lubricant. Discharge gas temperatures can reach very high values that are not sustainable for the compressor. The maximum discharge temperature measured at the discharge line within 4-8" of the discharge valve should not exceed 250°F. It is necessary to cool the return gas to ensure that the performance of the compressor will prevail.

Note: BITZER reciprocating compressors that are run with R22 need to use BITZER Oil: B5.2 or Alkyl benzene SUS 150 oil (AB 150).

Application Limits: Explanation of when special cooling methods are required

To obtain application limit diagrams at various conditions, use the BITZER software (download free from <u>www.bitzerus.com</u>). Note the areas that indicate head fan, superheat settings, VARICOOL, and liquid injection requirements. Head fan cooling can be done by an air cooled condenser fan blowing over the compressor.

BITZER CIC System for CE4 compressor


(For more detailed information refer to KT-130)

The CIC system is a reliable electronically controlled refrigerant injection device for limiting the temperature of 4 and 6 cylinder single stage reciprocating compressors operating in low temperature systems with R22. For improved cooling in the thermal limit area, BITZER developed a system, where suction gas cooling, external forced air cooling and controlled refrigerant injection are combined.

The central unit of this combined method of cooling is the electronic CIC system with control module, temperature sensor and pulse injection valve. The primary function of these components is the continuous control of the discharge gas temperature, as evaluated by the control module.

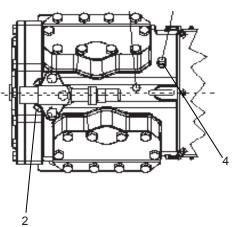
When a defined preset value is exceeded, liquid refrigerant is injected into the suction chamber of the compressor (after the motor) and directed against the hot cylinder walls by means of a special spray nozzle. The pulse injection value ensures exactly dosed quantity regulation.

The liquid refrigerant cools the cylinder area, due to evaporation, and at the same time reduces the temperature of the (superheated) suction gas transported from the motor. This measure combined with external forced air cooling also maintains the discharge gas temperature with single stage compression at a level considered as safe under practical conditions.

Y1037 valves for CE4 compressor

(See page 10 for valve sizing and part number)

The CE4 model compressors can be run with TREVs to lower the temperature of the refrigerant inside the compressor.


The Sporlan TREV Y1037 valves are available from BITZER US or various refrigeration wholesalers and have a variety of set points. Valves suitable for BITZER compressors are also available directly through BITZER US. These valves regulate the discharge gas temperature to 240°F*. Most valves have 3/8" SAE connections and the bulb sensor is 5 feet long. The only exception is the 1/3 ton valve which has 3/8 sweat connection and a 30 inch long sensor.

BITZER recommends injecting into the low pressure port of the compressor after the motor. These ports are shown in the figure below as port 4.

Be sure to install the TREV bulb 4-8 inches away from the discharge valve and properly insulate it to prevent influence from the ambient and head fan air.

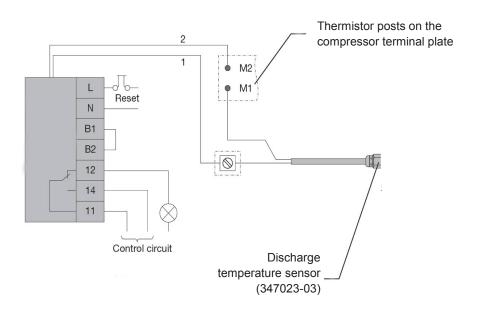
It is also recommended to install a solenoid valve before the Y-1037 valve to ensure the liquid feed is off when the compressor is off.

*BITZER carries 240°F Y1037 valves. Using a Y1037 valve below 230°F is not recommended.

<u>CE4 Series</u>

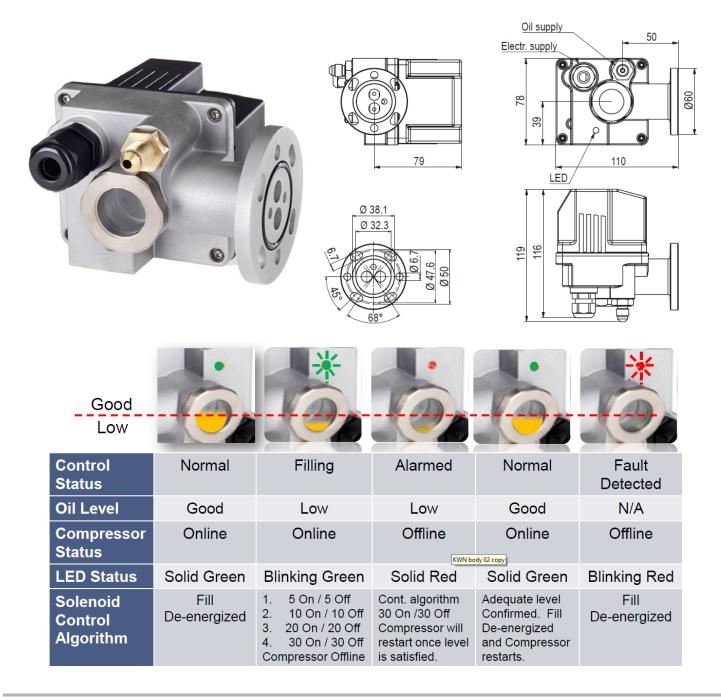
Figure 4.4: Port locations for valve and discharge temp sensor

Installing a Discharge Temperature Sensor


The use of a discharge temperature sensor as a backup safety is recommended as an additional step to protect the compressor from damage. This safety device has proved especially useful when using R22 in low temperature applications, even when an injection device is in place to cool the return gas.

For CE3 compressors it will only monitor the temperature of one head.

BITZER offers a discharge temperature sensor (part # 347023-03) that will open the SE-B INT module at 140°C / 284°F.


Installation: Apply Teflon tape sealant to the threads of the sensor and install into port 2 (see Figure 5.4). The sensor must not be installed further downstream (e.g. at discharge piping) due to the ability of the gas to lose heat quickly; doing so would allow unsafe temperatures in the head.

Wire the sensor according to diagram below:

- Oil connection size: 7/16"-20 UNF
- 180 reversible 2 possible installation positions
- Adaptor for threaded sight glass models (CE3): 990-8000-02
- Torque threaded sight glass adaptor to 65 Nm or 48lbf-ft.
- Torque sight glass bolts to 11 Nm or 8.1 lbf-ft.
- See page 19 for wiring diagram.

Installing Bitzer Oil Monitoring System

(For S models only. Does not apply to oil pump models)

OLC-K1 Optical Level Monitor

Bitzer Part: 347318-07 (110V – M20 threads)

347318-06 (230V - M20 threads)

OLC-K1 is comprised of two parts to make installation and maintenance easier.

Oil Level Evaluation Unit

Screw In Unit

- 1. Release the pressure with both service valves closed and the power supply disconnected.
- 2. Remove the M20 center bolt and metal gasket. (Figure 5.1).
- 3. Install the adapter into the bearing cap. Max torque 75Nm or 56ft-lb. (Figure 5.2a & 5.2b).

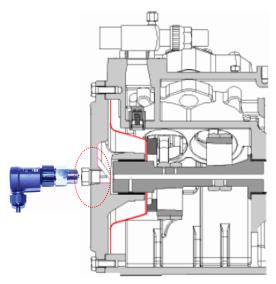
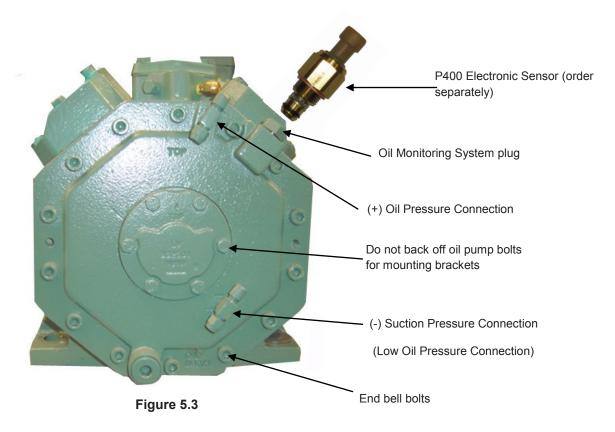


Figure 5.1

Figure 5.2a

Figure 5.2b

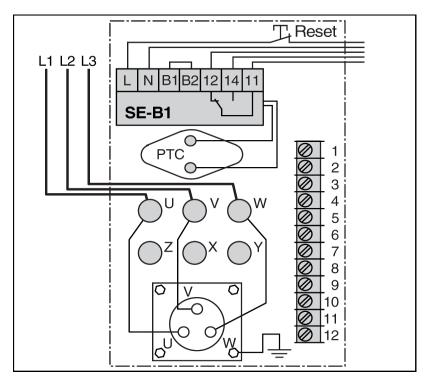

 Install the electrical sensor into the adapter and tighten the coupling ring approximately 10Nm or 7.4ft-lb (Figure 5.1). Pay attention to the position of the lead (cable exit downwards). For wiring directions, refer to the electrical appendix.

Mechanical or Electronic Oil Protection

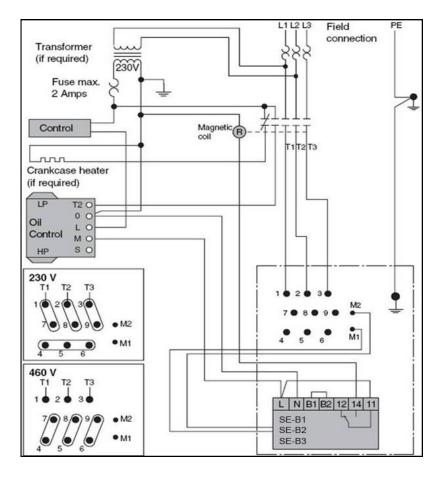
(For pump models only. Does not apply to S models)

- 1. There are several options available for oil pressure monitoring including: Bitzer's Delta PII (p/n: 347318-11) or Johnson P545 control w/P400 sensor (p/n: 860-3003-02).
- 2. When using the Johnson electronic control P545-NCB25 the electronic sensor is connected as shown in Figure 5.3.

- 3. Mechanical oil safety control connects to the (+) and (-) fittings shown in Figure 5.3.
- 4. High pressure oil is connected to the ¹/₄" SAE marked "+" and the suction is connected to the fitting marked "-".
- 6. Refer to the wiring appendix for diagrams for the electrical connections.
- 7. Bitzer's Delta PII oil pressure monitoring device is inserted in the same position as the P400 shown above. Torque the sensor piece to 75 Nm / 56 lbf.ft.


Notes

Wiring Diagram Located in Terminal Box


CE3 Models: 4FES – 4CES

"-4SU" motor: 460V/3ph/60Hz

CE4 Models: 4VE(S) – 4NE(S)

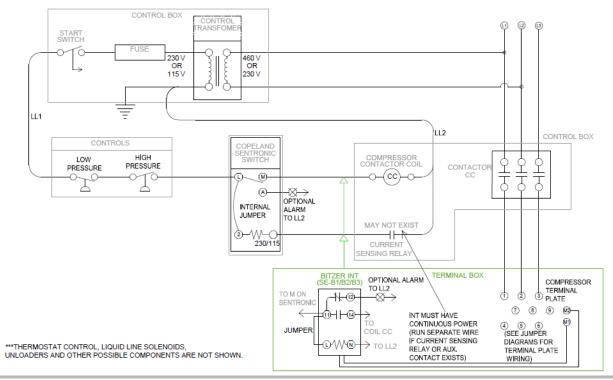
"-2NU" motor: 460V/3ph/60Hz

Wiring Diagram Appendix

DANGER OF ELECTROCUTION!!!

ALL WORK TO BE PERFORMED BY A TRAINED PROFESSIONAL

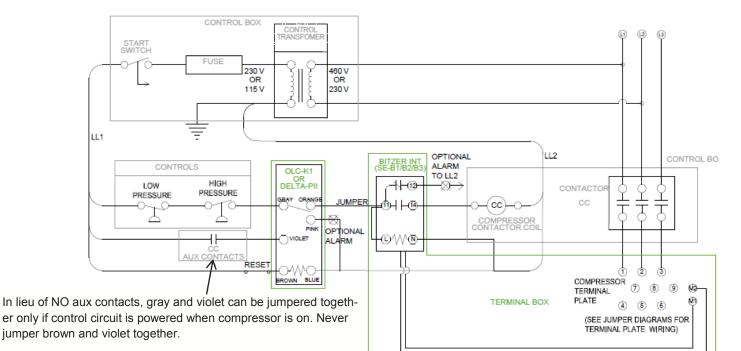
!!!ATTENTION!!!


WIRING SCHEMATICS ARE DIFFERENT FOR EVERY SYSTEM. THESE DRAWINGS ARE PRO-VIDED ONLY FOR REFERENCE AND MAY NOT BE USED LITERALLY.

CONSULT SYSTEM MANUFACTURER OR OTHER QUILFIED SYSTEM ENGINEER IF UNSURE OF REWIRING

Installing the BITZER INT (motor protection device:"SE-B")

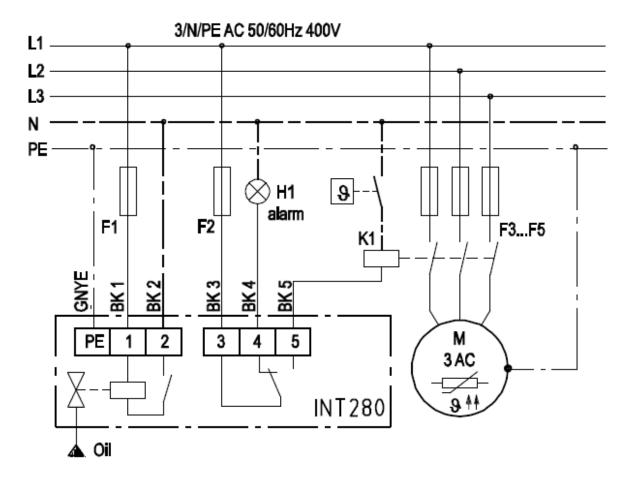
General directions (may not be applicable depending system):


- 1. Use 11 and 14 of the BITZER INT as part of the control circuit to replace M1 and M2 of the Copeland Module.
- 2. Use L and N on the INT to replace the line power T1 and T2.
- 3. Make sure the orange wires of the INT are connected to thermistors on the compressor terminal plate.
- 4. 11 and 14 will close when INT has power and the thermistors have resistance below 4500 Ω .
- If the resistance is greater than 4500 Ω, the module with trip. Disconnect power at L or N for 5 seconds to reset.
- 6. If possible, maintain separate power to L from 11 so the BITZER INT cannot be reset accidentally or be an electronic controller

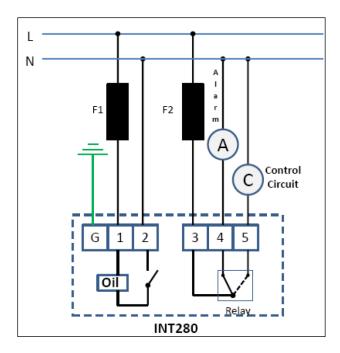
Replacing Copeland Models That Have No Overload (3Ds)

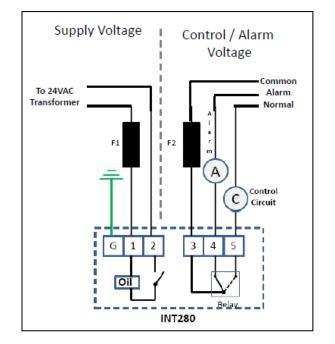
Using the OLC-K1 or Delta PII Oil Control

OLC-K1 and Delta PII connections:


Brown and blue power the unit Gray and orange are the control circuit relays Violet is the run proof for on-delay timers Pink (and gray) is alarm circuit

Note: Thermostat control, liquid line solenoids, unloaders and other possible components are not shown.


Notes


Wiring Oil Level Regulator (INT 280)

Simplified version:

24v verision:

10.0 Troubleshooting

Observation	Possible Cause	Trouble Shooting Steps
	Loss of power	Check voltage between phases before and after breaker, contactor and at the terminal box. Check voltage between the contactor coil.
Compressor	Overload protection (INT) tripped	Check resistance between M1 and M2. If resistance is lower than 1000 ohms, reset the INT. If the resistance is greater, check motor windings, supply voltage and ensure connections are tight.
is not running	Burnt motor	Check windings. Check continuity and resistance between windings. All wind- ings should have the same resistance of about 1 ohm and should show continui- ty. Also check continuity and resistance between each pin and ground. Re- sistance should be at least 50 Megaohms (non-continuous).
	Other protections tripped	Check continuity for all control circuit devices (e.g. low/high pressure switches, phase loss, oil failure, etc)
	Broken reeds	Check suction and discharge pressure. Turn off the compressor and look for the pressures to equalize. If the pressures equalize almost immediately, change valve plate.
Compressor is noisy	Wet suction	Check superheat on the suction side of the compressor (superheat should be at least 20° F). Adjust TXV to the appropriate superheat.
	Broken rod	Check for heavy vibrations. Replace compressor.
Compressor leaking	Gaskets / o-rings	Tighten bolts according to the torque chart. If the problem is not solved then change the gasket or o-ring. Inspect mating surfaces when changing gaskets. Only use BITZER gaskets / o-rings.
	Oil adapter / sight glass	Replace the oil adapter.
	Low pressure differen- tial	Minimum pressure differential is 9psi. Check oil level at the sightglass. Reverse the rotation by changing two phases of the power supply, look for improvement. If no improvement, change oil pump.
Oil pump	No pressure differential	Open oil pump. If the oil pump bearing is worn, change the complete oil pump.
	Oil level low	Add oil and check for leaks.
	Crankcase heater	May not be operating or installed. Crankcase heater remains on when compres- sor is off.
Flooded start	Piping	Piping is allowing liquid to enter the compressor when the compressor is off. Change piping.
	Migration	Ensure proper crankcase heating. If the compressor is outdoors, use housing or machine room.
	Suction line frozen	Check superheat at evaporator. Adjust TXV.
Floodback	Liquid coming back	Check evaporator fans for proper operation. Clean evaporator coil.

Observation	Possible Cause	Trouble Shooting Steps									
Compressor is running hot	High discharge	Check condenser fans for proper operation. Clean coil.									
	Suction temp high	Check return gas temperature.									
	Compression ratio is too high	Check set points and application limits.									
Oil failure trips	No oil at sightglass	Check for leaks and check piping. Possibility of improper traps.									
Oil failure trips	Oil at normal level	Possibility of liquid refrigerant in the crankcase.									
Oil failure trips	Oil sightglass full	Too much oil in the system.									

1.0 Start up	o data	she	et																	Bi	tzer
	vstem	Condensing unit (remote)	Chiller (self contained)			S															•
lon name	Parallel svstem	Condens	Chiller (s			/ Comments	-					psi	0	0		2					
Date Location Tech name						1	-		/8		YES/NO		YES/NO	YES/NO							
	Compressor installed in			System description		Voltage between phases	Amps per phase			psi Oil color	F Any foam?	F Oil pump (pressure dif)	F Condenser clean?	F Fans running?	ت المنامعة منابه ممامة	r using subcooler	Other protections	Low pressure switch	High pressure switch	Phase loss	Oli Tallure
ight from			$\left \right $										Ŀ		-		YES/NO				
Bitzer model number Serial Number Compressor/equipment bought from	Refrigerant Set points	Suction pressure	Discharge pressure	Defrost	Duration (mins) Type (air, elctric or gas)	DATA	Date	Time	Suction pressure	Discharge pressure	Suction temp	Discharge temp	Compressor superheat	Evaporator superheat	lieuid toma		Any noise?				

Notes

BITZER US, Inc.

4080 Enterprise Way Flowery Branch, GA 30542 Phone: 770-503-9226 Fax: 770-503-9440 Email: sales@bitzerus.com www.bitzerus.com

24h Emergency Replacement Hotline for US Customers: 1.888.G0 BITZER (1.888.462.4893)

BITZER Canada, Inc.

21125 Daoust Street Sainte-Anne-De-Bellevue, Quebec, Canada H9X 0A3 Phone: 514-697-3363 Fax: 514-697-9768 www.bitzer.ca

BITZER Mexico S. de R.L. de C.V.

Av. Adolfo López Mateos 221, Bodega 9, Col. Victoria 67110 Guadalupe, N.L., Mexico Phone: +52 (81) 1522 4500 Fax: +52 (81) 1522 4505 www.bitzermexico.com

BITZER LATIN AMERICA

colombia@bitzerus.com ecuador@bitzerus.com puertorico@bitzerus.com caribe@bitzerus.com centroamerica@bitzerus.com venezuela@bitzerus.com